Discriminative Neural Sentence Modeling by Tree-Based Convolution
نویسندگان
چکیده
This paper proposes a tree-based convolutional neural network (TBCNN) for discriminative sentence modeling. Our model leverages either constituency trees or dependency trees of sentences. The tree-based convolution process extracts sentences structural features, which are then aggregated by max pooling. Such architecture allows short propagation paths between the output layer and underlying feature detectors, enabling effective structural feature learning and extraction. We evaluate our models on two tasks: sentiment analysis and question classification. In both experiments, TBCNN outperforms previous state-of-the-art results, including existing neural networks and dedicated feature/rule engineering. We also make efforts to visualize the tree-based convolution process, shedding light on how our models work.
منابع مشابه
Tree-based Convolution: A New Neural Architecture for Sentence Modeling
This paper proposes a new convolutional neural architecture based on treestructures, called the tree-based convolutional neural network (TBCNN). Two variants take advantage of constituency trees and dependency trees, respectively, to model sentences. Compared with traditional “flat” convolutional neural networks (CNNs), TBCNNs explore explicitly sentences’ structural information; compared with ...
متن کاملNatural Language Inference by Tree-Based Convolution and Heuristic Matching
In this paper, we propose the TBCNNpair model to recognize entailment and contradiction between two sentences. In our model, a tree-based convolutional neural network (TBCNN) captures sentencelevel semantics; then heuristic matching layers like concatenation, element-wise product/difference combine the information in individual sentences. Experimental results show that our model outperforms exi...
متن کاملRecognizing Entailment and Contradiction by Tree-based Convolution
In this paper, we propose the TBCNNpair model to recognize entailment and contradiction between two sentences. In our model, a tree-based convolutional neural network (TBCNN) captures sentencelevel semantics; then heuristic matching layers like concatenation, element-wise product/difference combine the information in individual sentences. Experimental results show that our model outperforms exi...
متن کاملApproximate Kernels for Trees
Convolution kernels for trees provide effective means for learning with treestructured data, such as parse trees of natural language sentences. Unfortunately, the computation time of tree kernels is quadratic in the size of the trees as all pairs of nodes need to be compared: large trees render convolution kernels inapplicable. In this paper, we propose a simple but efficient approximation tech...
متن کاملA Re-ranking Model for Dependency Parser with Recursive Convolutional Neural Network
In this work, we address the problem to model all the nodes (words or phrases) in a dependency tree with the dense representations. We propose a recursive convolutional neural network (RCNN) architecture to capture syntactic and compositional-semantic representations of phrases and words in a dependency tree. Different with the original recursive neural network, we introduce the convolution and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015